Product Description
The function of the auto CV JOINT universal joint:
The inner cv joint is connected to the gearbox differential, and the outer ball cage is connected to the wheel. The function of the outer cv joint is the function of the outer cv joint, no matter it is power output or when the vehicle is turning.
What to pay attention to when using the car cv joint dust cover boot:
1. The cv joint plays an important role in the transmission system of the car. It can transmit power from the engine to the wheels, so the cv joint should be well lubricated and dust-proof. Once the cv joint dust cover boot is broken, it needs to be replaced in time. .
2. When there are regular abnormal noises when the car turns or bumps, you can check whether the dust cover boot of the car cv joint is broken, because the dust cover boot of the cv joint is broken, and it is easy for dust to enter and damage the cv joint.
3. If there is no problem with the dust cover boot of the car cv joint, you should go to the auto repair shop to check whether the cv joint is broken by a professional master. If the cv joint is broken, you need to replace it, and it is best to replace the cv joint dust cover boot .
What caused the cv joint to be damaged?
1. The dust cover boot is damaged
The service life of the cv joint is closely related to the dust cover. The dust cover boot can effectively protect the internal grease of the cv joint from being polluted by the outside and being lost to the outside. Once the dust cover is damaged, if it is not discovered by the car owner in time, it will cause the inside of the cv joint to be polluted by sand, stones and muddy water from the outside, and it will be damaged quickly.
2. Long-term wading into water
In some models, the small clips of the dust jackets are not tightened very strongly. It can meet the daily splash waterproof, but if the water is too deep for a long time, it is easy to cause water to enter the cv joint. It is not easy for the car owner to find out after the water enters, which will lead to wear and tear inside the cv joint.
HDAG brand CV JOINTS universal joint FEATURE:
1. Bell-shaped shell: CF53 ball cage special steel or 55# steel, after forging + normalizing treatment, good rigidity, high strength and wear resistance. HDAG adopts a double-arc four-point contact structure, which is the most ideal channel structure for the outer ball cage at present.
2. Inner wheel and cage: applied material of 20CrMnTi (gear steel) + carburizing (the carburizing layer is controlled at 0.6mm);Compared with 20Cr, 20CrMnTi has the advantages of strong hardenability and permeability.
3. CV JOINTS Grease: molybdenum disulfide lithium base grease, molybdenum disulfide has good lubricating properties and excellent wear resistance, the lithium base grease type added with MoS2 has a good effect on metal parts that are directly stamped and formed without grinding and deep processing Running function; high and low temperature can work normally at -30°C-120°C.
4. CV JOINTS Dust cover boot: Neoprene (polychloroprene) + nitrile rubber, with good oil and chemical resistance, flame resistance, CHINAMFG resistance, weather resistance (-40 ° C ~ 120 ° C), high tensile strength Tensile strength and other properties
5. Steel ball: adopt bearing steel GCr15
6. Inner CV JOINT universal joint bolts: 35CrMo or 40Cr+hot forging+quenching and tempering, the performance grade is 12.0, the hardness value HV385~435 (HRC39-44) is the same standard as the original OEM parts, the torsional strength is high
Product description
Driveshaft cv joint axle for CHINAMFG Lexus Infiniti Corolla Yaris RAV4 Prius Hiace Prado Pickup Matrix Wish Highlander LandCruiser Tacoma 4Runner Avensis Vios honda Accord CRV Odyssey Civic City CHINAMFG tiida latio versa CHINAMFG L2
L200 TRITON C/ABS 08/
L200 TRITON C/ABS 08/
L200 SPORT HPE C/ABS-03/07
L200 SPORT HPE C/ABS-03/07
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Condition: | New |
---|---|
Color: | Natural Color |
Certification: | CE, ISO |
Car Model 6: | Toyota Lada Mitsubishi Nissan Isuzu Honda Mazda |
Car Model 1: | for Hyundai KIA Daewoo Daihatsu Suzuki |
Car Model 3: | for FIAT Opel Peugeot Renault Citroen |
Customization: |
Available
| Customized Request |
---|
How do you calculate the torque capacity of a universal joint?
Calculating the torque capacity of a universal joint involves considering various factors such as the joint’s design, material properties, and operating conditions. Here’s a detailed explanation:
The torque capacity of a universal joint is determined by several key parameters:
- Maximum Allowable Angle: The maximum allowable angle, often referred to as the “operating angle,” is the maximum angle at which the universal joint can operate without compromising its performance and integrity. It is typically specified by the manufacturer and depends on the joint’s design and construction.
- Design Factor: The design factor accounts for safety margins and variations in load conditions. It is a dimensionless factor typically ranging from 1.5 to 2.0, and it is multiplied by the calculated torque to ensure the joint can handle occasional peak loads or unexpected variations.
- Material Properties: The material properties of the universal joint’s components, such as the yokes, cross, and bearings, play a crucial role in determining its torque capacity. Factors such as the yield strength, ultimate tensile strength, and fatigue strength of the materials are considered in the calculations.
- Equivalent Torque: The equivalent torque is the torque value that represents the combined effect of the applied torque and the misalignment angle. It is calculated by multiplying the applied torque by a factor that accounts for the misalignment angle and the joint’s design characteristics. This factor is often provided in manufacturer specifications or can be determined through empirical testing.
- Torque Calculation: To calculate the torque capacity of a universal joint, the following formula can be used:
Torque Capacity = (Equivalent Torque × Design Factor) / Safety Factor
The safety factor is an additional multiplier applied to ensure a conservative and reliable design. The value of the safety factor depends on the specific application and industry standards but is typically in the range of 1.5 to 2.0.
It is important to note that calculating the torque capacity of a universal joint involves complex engineering considerations, and it is recommended to consult manufacturer specifications, guidelines, or engineering experts with experience in universal joint design for accurate and reliable calculations.
In summary, the torque capacity of a universal joint is calculated by considering the maximum allowable angle, applying a design factor, accounting for material properties, determining the equivalent torque, and applying a safety factor. Proper torque capacity calculations ensure that the universal joint can reliably handle the expected loads and misalignments in its intended application.
How do you address noise issues in a universal joint?
Noise issues in a universal joint can be addressed through various measures. Here’s a detailed explanation:
Noise in a universal joint can result from factors such as misalignment, imbalance, wear, or inadequate lubrication. Addressing noise issues involves identifying the underlying causes and implementing appropriate solutions. Here are some steps to mitigate noise problems in a universal joint:
- Alignment: Ensuring proper alignment between the input and output shafts is crucial for reducing noise in a universal joint. Misalignment can lead to increased stress, vibration, and noise generation. Aligning the shafts within the manufacturer’s specified tolerances helps minimize the angular deflection and associated noise.
- Balancing: Imbalance in the rotating components of a universal joint can contribute to noise generation. Balancing the yokes, crosses, or other relevant components helps minimize vibrations and noise. Techniques such as adding counterweights or using precision balancing equipment can help achieve better balance and reduce noise levels.
- Lubrication: Inadequate or improper lubrication can result in increased friction, wear, and noise in a universal joint. Using the manufacturer-recommended lubricant and following the specified lubrication intervals help ensure smooth operation and minimize noise. Regular maintenance, including lubrication checks and replenishment, is essential to mitigate noise issues arising from insufficient lubrication.
- Wear and Replacement: Wear in the universal joint components, such as the cross, bearings, or yokes, can contribute to noise. Regular inspection for signs of wear, such as pitting, scoring, or play, is necessary. If wear is detected, replacing the worn components with new ones that meet the manufacturer’s specifications can restore proper functionality and reduce noise.
- Vibration Damping: Implementing vibration damping techniques can help reduce noise in a universal joint. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations helps minimize the transmission of noise and improves the overall performance of the joint.
- Proper Maintenance: Regular maintenance practices are vital for addressing noise issues in a universal joint. This includes periodic inspections, lubrication checks, and addressing any signs of misalignment, wear, or damage. Timely maintenance helps identify and rectify potential sources of noise before they escalate and affect the joint’s performance and reliability.
By implementing these measures and considering the specific operating conditions and requirements of the system, noise issues in a universal joint can be effectively addressed. It’s important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance to ensure optimal performance and minimize noise generation in the joint.
What are the applications of a universal joint?
A universal joint, also known as a U-joint, finds applications in various industries and mechanical systems where the transmission of rotary motion is required between misaligned shafts. Here are some common applications of universal joints:
- Automotive Drivelines: One of the most well-known applications of universal joints is in automotive drivelines. Universal joints are used in the drivetrain to transmit power from the engine to the wheels while accommodating the misalignment between the engine, transmission, and axle shafts. They are commonly found in rear-wheel drive and four-wheel drive vehicles, connecting the transmission output shaft to the drive shaft and allowing the wheels to receive power even when the suspension system causes changes in angles and positions.
- Industrial Machinery: Universal joints are widely used in industrial machinery where the transmission of motion at angles is required. They are employed in various types of machinery, such as conveyors, mixers, pumps, printing presses, and machine tools. Universal joints enable the transfer of rotary motion between misaligned shafts, allowing these machines to operate efficiently and effectively.
- Marine and Propulsion Systems: In marine applications, universal joints are used in propulsion systems to transmit power from the engine to the propeller shaft. They allow for the necessary flexibility to accommodate the movement of the vessel and changes in the propeller shaft angle. Universal joints are also used in marine steering systems to transfer motion between the steering wheel and the rudder or outboard motor.
- Agricultural Equipment: Universal joints are utilized in agricultural machinery and equipment such as tractors, combines, and harvesters. They enable the transmission of power between different components, such as the engine, gearbox, and wheels, even when these components are not perfectly aligned. Universal joints provide the necessary flexibility to accommodate the movement and articulation required in agricultural operations.
- Aerospace and Aviation: Universal joints are used in aerospace and aviation applications where motion transmission at angles is required. They can be found in control systems for aircraft wings, flaps, and landing gear. Universal joints allow for the transfer of motion and control inputs between different components, ensuring smooth and reliable operation.
- Heavy Machinery and Construction Equipment: Universal joints are employed in heavy machinery and construction equipment, such as cranes, excavators, and loaders. They enable the transmission of power and motion between different parts of the machinery, accommodating the misalignment that may arise due to the movement and articulation of these machines.
- Railway Systems: Universal joints are used in railway systems for various applications. They are employed in drivetrains and power transmission systems to transmit motion between different components, such as the engine, gearboxes, and axles. Universal joints allow for smooth power transfer while accommodating the misalignment caused by the suspension and movement of the train.
- Robotics and Automation: Universal joints find applications in robotics and automation systems where motion needs to be transmitted between misaligned components. They are used in robotic arms, manipulators, and other automated systems to enable flexible and precise movement while accommodating misalignment and articulation requirements.
These are just a few examples of the diverse range of applications for universal joints. Their ability to transmit rotary motion between misaligned shafts with flexibility and efficiency makes them an essential component in numerous industries and mechanical systems.
editor by CX 2024-05-03
China Best Sales Ws Type Universal Joints Coupling with High Precision
Product Description
WS Type Universal Joint Shaft
Features:
1. It is suitable for transmission coupling space on the same plane of 2 axis angle beta β≤45°, the nominal torque transmission 11.2-1120N.
2.The WSD type is a single cross universal coupling, and the WS type is a double cross universal coupling.
3.Each section between the largest axis angle 45º.
4.The finished hole H7, according to the requirements of keyseating, 6 square hole and square hole.
5.The angle between the 2 axes is allowed in a limited range as the work requirements change.
NO |
Tn/N·m |
d(H7) |
D |
L0 |
L |
L1 |
m/kg |
I/kg·m2 |
||||||||||
WSD |
WS |
WSD |
WS |
WSD |
WS |
|||||||||||||
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
|||||
WS1 WSD1 |
11.2 |
8 |
16 |
60 |
– |
80 |
– |
20 |
– |
20 |
0.23 |
– |
0.32 |
– |
0.06 |
– |
0.08 |
– |
9 |
||||||||||||||||||
10 |
66 |
60 |
86 |
80 |
25 |
22 |
0.2 |
0.29 |
0.05 |
0.07 |
||||||||
WS2 WSD2 |
22.4 |
10 |
20 |
70 |
64 |
96 |
90 |
26 |
0.64 |
0.57 |
0.93 |
0.88 |
0.1 |
0.09 |
0.15 |
0.15 |
||
11 |
||||||||||||||||||
12 |
84 |
74 |
110 |
100 |
32 |
27 |
||||||||||||
WS3 WSD3 |
45 |
12 |
25 |
90 |
80 |
122 |
112 |
32 |
1.45 |
1.3 |
2.1 |
1.95 |
0.17 |
0.15 |
0.24 |
0.22 |
||
14 |
||||||||||||||||||
WS4 WSD4 |
71 |
16 |
32 |
116 |
82 |
154 |
130 |
42 |
30 |
38 |
5.92 |
4.86 |
8.56 |
0.48 |
0.39 |
0.32 |
0.56 |
0.49 |
18 |
||||||||||||||||||
WS5 WSD5 |
140 |
19 |
40 |
144 |
116 |
192 |
164 |
48 |
16.3 |
12.9 |
24 |
20.6 |
0.72 |
0.59 |
1.04 |
0.91 |
||
20 |
52 |
38 |
||||||||||||||||
22 |
||||||||||||||||||
WS6 WSD6 |
280 |
24 |
50 |
152 |
124 |
210 |
182 |
52 |
38 |
58 |
45.7 |
36.7 |
68.9 |
59.7 |
1.28 |
1.03 |
1.89 |
1.64 |
25 |
172 |
136 |
330 |
194 |
62 |
44 |
||||||||||||
28 |
||||||||||||||||||
WS7 WSD7 |
560 |
30 |
60 |
226 |
182 |
296 |
252 |
82 |
60 |
70 |
148 |
117 |
207 |
177 |
2.82 |
2.31 |
3.9 |
3.38 |
32 |
||||||||||||||||||
35 |
||||||||||||||||||
WS8 WSD8 |
1120 |
38 |
75 |
240 |
196 |
332 |
288 |
92 |
396 |
338 |
585 |
525 |
5.03 |
4.41 |
7.25 |
6.63 |
||
40 |
300 |
244 |
392 |
336 |
112 |
84 |
||||||||||||
42 |
Detailed Photos
Company Profile
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective.
Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.
5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.
FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
Q 9: What’s your payment?
A:1) T/T.
♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Standard Or Nonstandard: | Standard |
---|---|
Shaft Hole: | 19-32 |
Torque: | >80N.M |
Bore Diameter: | 14mm |
Speed: | 9000r/M |
Structure: | Flexible |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in both horizontal and vertical orientations?
Yes, universal joints can be used in both horizontal and vertical orientations. Here’s a detailed explanation:
Universal joints are mechanical devices designed to transmit rotary motion between two shafts that are not in a straight line alignment. They consist of a cross-shaped or H-shaped yoke with bearings at each end that connect to the shafts. The design of universal joints allows them to accommodate angular misalignment between the shafts, making them suitable for various applications, including both horizontal and vertical orientations.
When used in a horizontal orientation, universal joints can transmit rotational motion between shafts that are positioned at different angles or offsets. They are commonly found in drivetrain systems of vehicles, where they transfer power from the engine to the wheels, even when the drivetrain components are not perfectly aligned. In this configuration, universal joints can effectively handle the torque requirements and misalignment caused by uneven terrain, suspension movement, or steering angles.
In a vertical orientation, universal joints can also be utilized to transfer rotational motion between shafts that are positioned vertically. This arrangement is often seen in applications such as industrial equipment, machinery, or agricultural implements. For example, in a vertical power transmission system, a universal joint can be used to connect a vertical driving shaft to a vertical driven shaft, enabling power transfer and accommodating any angular misalignment that may occur due to variations in shaft positions or vibrations.
It’s important to note that the specific design and selection of universal joints for different orientations should consider factors such as the torque requirements, operating conditions, and the manufacturer’s specifications. The orientation of the universal joint may affect factors such as lubrication, load-bearing capacity, and the need for additional support or stabilization mechanisms.
In summary, universal joints can be used in both horizontal and vertical orientations. Their ability to accommodate angular misalignment makes them versatile components for transmitting rotary motion between shafts that are not in a straight line alignment, regardless of the orientation.
Can universal joints be used in heavy-duty machinery and equipment?
Yes, universal joints can be used in heavy-duty machinery and equipment. Here’s a detailed explanation:
Universal joints are widely employed in various industrial applications, including heavy-duty machinery and equipment. They offer several advantages that make them suitable for such applications:
- Flexibility: Universal joints are designed to transmit torque and accommodate angular misalignment between shafts. This flexibility allows for the transmission of power even when the shafts are not perfectly aligned, which is often the case in heavy-duty machinery where misalignment can occur due to structural deflection, thermal expansion, or other factors.
- Torque Transmission: Universal joints are capable of transmitting significant amounts of torque. The torque capacity of a universal joint depends on factors such as its size, design, and the materials used. In heavy-duty machinery, where high torque levels are common, appropriately sized and robust universal joints can effectively handle the required torque transmission.
- Compactness: Universal joints are compact in design, allowing them to be integrated into tight spaces within machinery and equipment. Their compactness enables efficient power transmission in applications where space constraints are a concern.
- Durability: Universal joints can be manufactured from materials that provide high strength and durability, such as alloy steels or stainless steels. This durability allows them to withstand heavy loads, harsh operating conditions, and repetitive motion, making them suitable for heavy-duty machinery and equipment.
- Cost-Effectiveness: Universal joints are often a cost-effective solution for torque transmission in heavy-duty machinery. Compared to alternative power transmission methods, such as gearboxes or direct drives, universal joints can offer a more economical option while still providing adequate performance and reliability.
However, it’s important to consider the specific requirements and operating conditions of the heavy-duty machinery when selecting and implementing universal joints. Factors such as the torque levels, rotational speed, angular misalignment, operating temperature, and maintenance practices should be carefully evaluated to ensure that the chosen universal joints are appropriately sized, rated, and maintained for reliable and safe operation.
In summary, universal joints can indeed be used in heavy-duty machinery and equipment. Their flexibility, torque transmission capabilities, compactness, durability, and cost-effectiveness make them a viable choice for power transmission in a wide range of heavy-duty applications.
What are the applications of a universal joint?
A universal joint, also known as a U-joint, finds applications in various industries and mechanical systems where the transmission of rotary motion is required between misaligned shafts. Here are some common applications of universal joints:
- Automotive Drivelines: One of the most well-known applications of universal joints is in automotive drivelines. Universal joints are used in the drivetrain to transmit power from the engine to the wheels while accommodating the misalignment between the engine, transmission, and axle shafts. They are commonly found in rear-wheel drive and four-wheel drive vehicles, connecting the transmission output shaft to the drive shaft and allowing the wheels to receive power even when the suspension system causes changes in angles and positions.
- Industrial Machinery: Universal joints are widely used in industrial machinery where the transmission of motion at angles is required. They are employed in various types of machinery, such as conveyors, mixers, pumps, printing presses, and machine tools. Universal joints enable the transfer of rotary motion between misaligned shafts, allowing these machines to operate efficiently and effectively.
- Marine and Propulsion Systems: In marine applications, universal joints are used in propulsion systems to transmit power from the engine to the propeller shaft. They allow for the necessary flexibility to accommodate the movement of the vessel and changes in the propeller shaft angle. Universal joints are also used in marine steering systems to transfer motion between the steering wheel and the rudder or outboard motor.
- Agricultural Equipment: Universal joints are utilized in agricultural machinery and equipment such as tractors, combines, and harvesters. They enable the transmission of power between different components, such as the engine, gearbox, and wheels, even when these components are not perfectly aligned. Universal joints provide the necessary flexibility to accommodate the movement and articulation required in agricultural operations.
- Aerospace and Aviation: Universal joints are used in aerospace and aviation applications where motion transmission at angles is required. They can be found in control systems for aircraft wings, flaps, and landing gear. Universal joints allow for the transfer of motion and control inputs between different components, ensuring smooth and reliable operation.
- Heavy Machinery and Construction Equipment: Universal joints are employed in heavy machinery and construction equipment, such as cranes, excavators, and loaders. They enable the transmission of power and motion between different parts of the machinery, accommodating the misalignment that may arise due to the movement and articulation of these machines.
- Railway Systems: Universal joints are used in railway systems for various applications. They are employed in drivetrains and power transmission systems to transmit motion between different components, such as the engine, gearboxes, and axles. Universal joints allow for smooth power transfer while accommodating the misalignment caused by the suspension and movement of the train.
- Robotics and Automation: Universal joints find applications in robotics and automation systems where motion needs to be transmitted between misaligned components. They are used in robotic arms, manipulators, and other automated systems to enable flexible and precise movement while accommodating misalignment and articulation requirements.
These are just a few examples of the diverse range of applications for universal joints. Their ability to transmit rotary motion between misaligned shafts with flexibility and efficiency makes them an essential component in numerous industries and mechanical systems.
editor by CX 2024-05-02
China Standard Agricultural Auto Car Expansion Universal Flexible CZPT CV Rubber Steering Spare Truck Tractor Parts Socket Robot OEM Ball Joint for Drag Link Backhoe Loader
Product Description
Product Description |
Warranty | 1 Year | Certification | TS16949 |
Color | Natural color | Application | Massey Ferguson |
OEM NO. | 1277261C1 | MOQ | 100 PCS |
Engravement | Customized | Port | HangZhou/ZheJiang |
Specifications
1.Supply to USA,Europe,and so on
2.Matrial:Body C45 Ball Pin Cr40
3.Professional Perfomance Auto parts supplier
Detail Images |
Other Products |
Our Company |
Packing & Delivery |
Certification |
Our Service |
1. OEM Manufacturing welcome: Product, Package…
2. Sample order
3. We will reply you for your inquiry in 24 hours.
4. after sending, we will track the products for you once every 2 days, until you get the products. When you got the
goods, test them, and give me a feedback.If you have any questions about the problem, contact with us, we will offer
the solve way for you.
FAQ |
Q1. What is your terms of packing?
A: Generally, we pack our goods in neutral white boxes and brown cartons. If you have legally registered patent,
we can pack the goods in your branded boxes after getting your authorization letters.
Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages
before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will take 30 to 60 days after receiving your advance payment. The specific delivery time depends
on the items and the quantity of your order.
Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and
the courier cost.
Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them,
no matter where they come from. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Help Check |
---|---|
Warranty: | 1 Year |
Type: | Tie Rod End |
Material: | Stainless Steel |
Certification: | ISO, AISI, DIN, API, CE, ASTM |
Automatic: | Automatic |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do you properly maintain and lubricate a universal joint?
Maintaining and lubricating a universal joint is essential to ensure its smooth operation, extend its lifespan, and prevent premature failure. Here’s a detailed explanation of the proper maintenance and lubrication process:
To properly maintain and lubricate a universal joint, follow these steps:
- Consult Manufacturer Guidelines: Refer to the manufacturer’s guidelines and recommendations specific to the universal joint being used. Manufacturers often provide detailed instructions regarding maintenance intervals, lubrication types, and procedures. Familiarize yourself with these guidelines before performing any maintenance or lubrication.
- Inspect the Joint: Regularly inspect the universal joint for signs of wear, damage, or misalignment. Look for indications of excessive play, corrosion, fatigue, or any other abnormalities. Inspecting the joint allows you to identify potential issues before they escalate. If any problems are detected, address them promptly to prevent further damage or failure.
- Clean the Joint: Before applying lubrication, clean the universal joint to remove any dirt, debris, or old lubricant that may have accumulated. Use a suitable cleaning agent or solvent recommended by the manufacturer. It’s important to have a clean surface for effective lubrication.
- Select the Proper Lubricant: Choose the appropriate lubricant specified by the manufacturer. The type of lubricant required may vary based on factors such as the universal joint design, operating conditions, and temperature range. Common lubricants used for universal joints include grease or oil. Ensure that the selected lubricant is compatible with the joint’s materials and operating environment.
- Apply Lubricant: Apply the lubricant to the universal joint according to the manufacturer’s instructions. Pay attention to the specific lubrication points, such as the bearing caps, needle bearings, or trunnions. Use the recommended amount of lubricant to ensure proper coverage and distribution. Avoid over-lubrication as it can lead to excessive heat generation and increased friction.
- Operate the Joint: After lubrication, operate the universal joint to distribute the lubricant evenly and ensure it reaches all necessary components. Rotate or move the joint through its full range of motion several times to facilitate the spreading of the lubricant and to verify smooth operation. This step helps to eliminate any air pockets and ensures that all surfaces are adequately lubricated.
- Monitor and Reapply: Regularly monitor the universal joint’s performance and lubrication condition. Periodically check for any signs of lubricant breakdown, contamination, or leakage. Depending on the manufacturer’s recommendations, reapply lubrication at specified intervals or when necessary to maintain optimal operation. Factors such as operating conditions, load, and temperature may influence the frequency of lubrication.
- Keep Records: Maintain a record of the universal joint’s maintenance activities, including lubrication dates, lubricant type, and any observations made during inspections. These records can help establish a maintenance schedule, track the joint’s performance over time, and serve as a reference for future maintenance or troubleshooting.
By following these steps and adhering to the manufacturer’s guidelines, you can properly maintain and lubricate a universal joint, promoting its longevity, reliability, and optimal performance.
How do you address the effect of temperature variations on a universal joint?
Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:
Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:
- Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
- Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
- Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
- Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
- Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.
It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.
In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.
What are the potential limitations or drawbacks of using universal joints?
While universal joints offer several advantages in transmitting torque between non-aligned or angularly displaced shafts, they also have some limitations and drawbacks to consider. Here are some potential limitations of using universal joints:
- Angular limitations: Universal joints have specific angular limits within which they can operate efficiently. If the angle between the input and output shafts exceeds these limits, it can lead to increased wear, vibration, and decreased power transmission efficiency. Operating a universal joint at extreme angles or near its angular limits can result in premature failure or reduced service life.
- Backlash and play: Universal joints can have inherent backlash and play due to the design and clearance between the components. This can result in a loss of precision in torque transmission, especially in applications that require accurate positioning or minimal rotational play.
- Maintenance and lubrication: Universal joints require regular maintenance and proper lubrication to ensure their optimal performance and longevity. Failing to adhere to the recommended lubrication intervals or using inadequate lubricants can lead to increased friction, wear, and potential joint failure.
- Limited misalignment compensation: While universal joints can accommodate some misalignment between the input and output shafts, they have limitations in compensating for large misalignments. Excessive misalignment can cause increased stress, wear, and potential binding or seizure of the joint.
- Non-constant velocity: Standard universal joints, also known as Cardan joints, do not provide constant velocity output. As the joint rotates, the output shaft speed fluctuates due to the changing angular velocity caused by the joint’s design. Applications that require constant velocity output may necessitate the use of alternative joint types, such as constant velocity (CV) joints.
- Limitations in high-speed applications: Universal joints may not be suitable for high-speed applications due to the potential for vibration, imbalance, and increased stress on the joint components. At high rotational speeds, the joint’s limitations in balance and precision can become more pronounced, leading to reduced performance and potential failure.
- Space and weight considerations: Universal joints require space to accommodate their design, including the yokes, cross, and bearings. In compact or weight-conscious applications, the size and weight of the universal joint may pose challenges, requiring careful design considerations and trade-offs.
It’s important to evaluate these limitations and drawbacks in the context of the specific application and system requirements. In some cases, alternative power transmission solutions, such as flexible couplings, CV joints, gearboxes, or direct drives, may be more suitable depending on the desired performance, efficiency, and operating conditions.
editor by CX 2024-04-30
China Standard CZPT Ws Type Telescopic Universal Joints
Product Description
Product Description
Small Type Double Joints Universal Joint Coupling(
Features:
1. It is suitable for transmission coupling space on the same plane of two-axis angle beta β≤45°, the nominal torque transmission 11.2-1120N.
2. The WSD type is a single joint universal coupling, and the WS type is a double joint universal coupling.
3. Each section is between the largest axis angle of 45º.
4. The finished hole H7, according to the requirements of keyseating, has 6 square holes and a square hole.
5. The angle between the 2 axes is allowed in a limited range as the work requirements change.
Detailed Photos
Product Parameters
NO | Tn/N·m |
d(H7) | D | L0 | L | L1 | m/kg | I/kg·m2 | ||||||||||
WSD | WS |
WSD | WS | WSD | WS | |||||||||||||
Y | J1 | Y | J1 | Y | J1 | Y | J1 | Y | J1 | Y | J1 | Y | J1 | |||||
WS1 WSD1 |
11.2 | 8 | 16 | 60 | – | 80 | – | 20 | – | 20 | 0.23 | – | 0.32 | – | 0.06 | – | 0.08 | – |
9 | ||||||||||||||||||
10 | 66 | 60 | 86 | 80 | 25 | 22 | 0.2 | 0.29 | 0.05 | 0.07 | ||||||||
WS2 WSD2 |
22.4 | 10 | 20 | 70 | 64 | 96 | 90 | 26 | 0.64 | 0.57 | 0.93 | 0.88 | 0.1 | 0.09 | 0.15 | 0.15 | ||
11 | ||||||||||||||||||
12 | 84 | 74 | 110 | 100 | 32 | 27 | ||||||||||||
WS3 WSD3 |
45 | 12 | 25 | 90 | 80 | 122 | 112 | 32 | 1.45 | 1.3 | 2.1 | 1.95 | 0.17 | 0.15 | 0.24 | 0.22 | ||
14 | ||||||||||||||||||
WS4 WSD4 |
71 | 16 | 32 | 116 | 82 | 154 | 130 | 42 | 30 | 38 | 5.92 | 4.86 | 8.56 | 0.48 | 0.39 | 0.32 | 0.56 | 0.49 |
18 | ||||||||||||||||||
WS5 WSD5 |
140 | 19 | 40 | 144 | 116 | 192 | 164 | 48 | 16.3 | 12.9 | 24 | 20.6 | 0.72 | 0.59 | 1.04 | 0.91 | ||
20 | 52 | 38 | ||||||||||||||||
22 | ||||||||||||||||||
WS6 WSD6 |
280 | 24 | 50 | 152 | 124 | 210 | 182 | 52 | 38 | 58 | 45.7 | 36.7 | 68.9 | 59.7 | 1.28 | 1.03 | 1.89 | 1.64 |
25 | 172 | 136 | 330 | 194 | 62 | 44 | ||||||||||||
28 | ||||||||||||||||||
WS7 WSD7 |
560 | 30 | 60 | 226 | 182 | 296 | 252 | 82 | 60 | 70 | 148 | 117 | 207 | 177 | 2.82 | 2.31 | 3.9 | 3.38 |
32 | ||||||||||||||||||
35 | ||||||||||||||||||
WS8 WSD8 |
1120 | 38 | 75 | 240 | 196 | 332 | 288 | 92 | 396 | 338 | 585 | 525 | 5.03 | 4.41 | 7.25 | 6.63 | ||
40 | 300 | 244 | 392 | 336 | 112 | 84 | ||||||||||||
42 |
Company Profile
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Our company supplies different kinds of products: high quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we provide good quality products at a reasonable price.
Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.
Our Services
1. Design Services
Our design team has experience in universal joints relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.
5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.
FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artwork in PDF or AI format.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle when you make the bulk order the cost of the sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
Q 9: What’s your payment?
A: T/T.
Thanks!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Standard Or Nonstandard: | Nonstandard |
---|---|
Shaft Hole: | as Your Requirement |
Torque: | as Your Requirement |
Bore Diameter: | as Your Requirement |
Speed: | as Your Requirement |
Structure: | Flexible |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in precision manufacturing equipment?
Yes, universal joints can be used in precision manufacturing equipment, depending on the specific requirements and applications. Here’s a detailed explanation:
Precision manufacturing equipment often requires precise and reliable motion transmission between different components or subsystems. Universal joints can be employed in such equipment to facilitate the transmission of rotational motion and torque while accommodating misalignment or angular variations. However, their usage in precision manufacturing equipment is subject to certain considerations:
- Motion Transmission: Universal joints are effective in transmitting rotational motion and torque across misaligned or non-collinear shafts. In precision manufacturing equipment, where precise and synchronized motion is crucial, universal joints can provide flexibility and compensate for slight misalignments or angular variations, ensuring reliable motion transfer.
- Angular Accuracy: Precision manufacturing often requires maintaining precise angular accuracy during operation. While universal joints can accommodate misalignments, they introduce certain angular errors due to their design. These errors may be acceptable or manageable depending on the specific application. However, in cases where extremely tight angular accuracy is required, alternative motion transmission mechanisms, such as precision couplings or direct drives, might be preferred.
- Backlash and Play: Universal joints can exhibit a certain degree of backlash or play, which may affect the precision of the manufacturing process. Backlash refers to the slight movement or play that occurs when reversing the direction of rotation. In precision manufacturing equipment, minimizing backlash is often critical. Careful selection of high-quality universal joints or incorporating additional mechanisms to reduce backlash, such as preloading or anti-backlash devices, might be necessary to achieve the desired precision.
- Load and Speed Considerations: When using universal joints in precision manufacturing equipment, it is essential to consider the expected loads and operating speeds. Universal joints have specific load and speed limitations, and exceeding these limits can lead to premature wear, reduced precision, or even failure. Careful selection of universal joints with appropriate load and speed ratings based on the application’s requirements is necessary to ensure optimal performance.
- Maintenance and Lubrication: Regular maintenance and proper lubrication are crucial for the reliable and precise operation of universal joints in precision manufacturing equipment. Following manufacturer guidelines regarding lubrication intervals, lubricant types, and maintenance procedures is essential. Regular inspection of the joints for wear, damage, or misalignment is also necessary to identify any issues that could affect precision.
- Application-Specific Considerations: Each precision manufacturing application may have unique requirements and constraints. Factors such as available space, environmental conditions, required precision levels, and integration with other components should be taken into account when determining the feasibility and suitability of using universal joints. Consulting with experts or manufacturers specializing in precision manufacturing equipment can help in evaluating the best motion transmission solution for a specific application.
In summary, universal joints can be used in precision manufacturing equipment to facilitate motion transmission while accommodating misalignment. However, their usage should be carefully evaluated considering factors such as angular accuracy requirements, backlash and play limitations, load and speed considerations, maintenance needs, and application-specific constraints.
Can universal joints be used in agricultural equipment?
Yes, universal joints can be used in agricultural equipment. Here’s a detailed explanation:
Universal joints are commonly employed in various types of agricultural equipment and machinery. They offer several advantages that make them suitable for agricultural applications. Here are some key points to consider:
- Torque Transmission: Agricultural equipment often requires the transmission of high torque levels to perform tasks such as plowing, tilling, harvesting, or powering other implements. Universal joints are capable of transmitting significant amounts of torque, making them suitable for handling the power requirements of agricultural machinery.
- Flexibility: Agricultural equipment frequently operates in uneven terrain or encounters obstacles that can cause angular misalignment between the driving and driven components. Universal joints can accommodate such misalignment and transmit torque even when the shafts are not perfectly aligned. This flexibility allows agricultural machinery to navigate uneven surfaces and maintain power transfer.
- Durability: Universal joints can be constructed from materials that provide high strength and durability, such as alloy steels. Agricultural equipment often operates in demanding conditions, including exposure to dust, moisture, and vibrations. Robust universal joints can withstand these harsh environments and repetitive motions, ensuring reliable performance and longevity.
- Cost-Effectiveness: Universal joints offer a cost-effective solution for torque transmission in agricultural equipment. Compared to alternative power transmission methods, such as complex gear systems or hydraulic drives, universal joints can provide a more economical option while still delivering adequate performance and reliability.
- Wide Application Range: Universal joints can be used in various agricultural equipment, including tractors, combine harvesters, balers, seeders, sprayers, and more. They are versatile components that can be integrated into different systems and configurations, allowing for efficient power transmission in a wide range of agricultural applications.
It’s important to note that the specific design and selection of universal joints for agricultural equipment should consider factors such as the torque requirements, operating conditions, maintenance practices, and safety considerations. Proper sizing, lubrication, and regular inspections are crucial for ensuring optimal performance and preventing premature wear or failure.
In summary, universal joints can indeed be used in agricultural equipment. Their torque transmission capabilities, flexibility, durability, cost-effectiveness, and versatility make them a suitable choice for power transmission in various agricultural machinery and equipment.
Are there different types of universal joints available?
Yes, there are different types of universal joints available to suit various applications and requirements. Let’s explore some of the commonly used types:
- Single Joint (Cardan Joint): The single joint, also known as a Cardan joint, is the most basic and widely used type of universal joint. It consists of two yokes connected by a cross-shaped center piece. The yokes are typically 90 degrees out of phase with each other, allowing for angular displacement and misalignment between shafts. Single joints are commonly used in automotive drivelines and industrial applications.
- Double Joint: A double joint, also referred to as a double Cardan joint or a constant velocity joint, is an advanced version of the single joint. It consists of two single joints connected in series with an intermediate shaft in between. The use of two joints in series helps to cancel out the velocity fluctuations and reduce vibration caused by the single joint. Double joints are commonly used in automotive applications, especially in front-wheel-drive vehicles, to provide constant velocity power transmission.
- Tracta Joint: The Tracta joint, also known as a tripod joint or a three-roller joint, is a specialized type of universal joint. It consists of three rollers or balls mounted on a spider-shaped center piece. The rollers are housed in a three-lobed cup, allowing for flexibility and articulation. Tracta joints are commonly used in automotive applications, particularly in front-wheel-drive systems, to accommodate high-speed rotation and transmit torque smoothly.
- Rzeppa Joint: The Rzeppa joint is another type of constant velocity joint commonly used in automotive applications. It features six balls positioned in grooves on a central sphere. The balls are held in place by an outer housing with an inner race. Rzeppa joints provide smooth power transmission and reduced vibration, making them suitable for applications where constant velocity is required, such as drive axles in vehicles.
- Thompson Coupling: The Thompson coupling, also known as a tripodal joint, is a specialized type of universal joint. It consists of three interconnected rods with spherical ends. The arrangement allows for flexibility and misalignment compensation. Thompson couplings are often used in applications where high torque transmission is required, such as industrial machinery and power transmission systems.
These are just a few examples of the different types of universal joints available. Each type has its own advantages and is suitable for specific applications based on factors such as torque requirements, speed, angular displacement, and vibration reduction. The selection of the appropriate type of universal joint depends on the specific needs of the application.
editor by CX 2024-04-30
China Standard Cross Joint Bearing Guh-60 37401-1172 Universal Joint Cross Bearing Manufacturer 40.2X115mm
Product Description
Type |
Universal Joint |
Brand |
Huihai |
Car Model |
For HINO GMB NO. GUH60 MATSUBA NO. UJ510 |
OE NO. |
37401-1172 |
Parameters |
27×81.75/20CR |
Condition |
100% new |
Warranty |
12 month |
The Universal Joint is a part of variable Angle power transmission, which is used to change the direction of the transmission axis. It is the “joint” part of the universal transmission device of the automobile drive system. The combination of universal joint and transmission shaft is called universal joint transmission device. On the front-engine rear-wheel drive vehicle, the universal joint transmission device is installed between the transmission output shaft and the drive axle main reducer input shaft; The front-engine front-wheel drive vehicle omits the drive shaft, and the universal joint is installed between the front axle axle and the wheel, which is responsible for both driving and steering.
Q1.What is your MOQ?
A: We accept lower quantity for your trial order.
Q2. How long is the production lead time?
A: For some item we keep some stock that can be deliveried in 2 weeks.
Q3.What is your payment term?
A: Discussed! T/T / L/C /Paypal etc.
Q4.Can I customized my own Brand ?
A: Yes, we can do however you need to reach certain quantity for each item
Q5. What is a package?
A: Neutral packaging or customer packaging.
Q6. Can you help with the delivery of the goods?
A: Yes. We can help deliver goods through our customer freight forwarders or our freight forwarders.
Q7. Which port does our company supply?
A: Usually in HangZhou Port. The port specified by the customer is acceptable.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | One Year |
---|---|
Warranty: | One Year Warranty |
Condition: | New |
Color: | Silver |
Certification: | ISO |
Structure: | Single |
What are the potential challenges in designing and manufacturing universal joints?
Designing and manufacturing universal joints can present various challenges that need to be addressed to ensure optimal performance and reliability. Here’s a detailed explanation:
1. Misalignment Compensation: Universal joints are primarily designed to accommodate angular misalignment between two shafts. Designing a universal joint that can effectively compensate for misalignment while maintaining smooth power transmission can be challenging. The joint must provide flexibility without sacrificing strength or introducing excessive play, which could lead to vibration, noise, or premature wear.
2. Torque Transmission: Universal joints are often used in applications that require the transfer of high torque loads. Designing the joint to handle these loads without failure or excessive wear is a significant challenge. The selection of appropriate materials, heat treatment processes, and bearing designs becomes crucial to ensure the strength, durability, and reliability of the joint.
3. Lubrication and Sealing: Universal joints require proper lubrication to minimize friction, heat generation, and wear between the moving components. Designing an effective lubrication system that ensures sufficient lubricant supply to all critical areas can be challenging. Additionally, designing seals and protective covers to prevent contamination and retain lubrication presents a challenge, as the joint must maintain flexibility while ensuring adequate sealing.
4. Bearing Design and Wear: Universal joints rely on bearings to facilitate smooth rotation and to support the shafts. Designing the bearing arrangement to withstand the loads, maintain proper alignment, and resist wear is essential. Choosing the appropriate bearing type, such as needle bearings or plain bearings, and optimizing their size, material, and lubrication conditions are key challenges in the design process.
5. Manufacturability: Manufacturing universal joints with precision and consistency can be challenging due to their complex geometries and the need for tight tolerances. The manufacturing process must ensure accurate machining, assembly, and balancing of the joint components to achieve proper fit, alignment, and balance. Specialized machining techniques and quality control measures are often required to meet the desired specifications.
6. Cost and Size Optimization: Designing universal joints that are cost-effective and compact while meeting performance requirements can be a challenging task. Balancing the need for robustness, durability, and material efficiency with cost considerations requires careful engineering and optimization. Designers must strike a balance between performance, weight, space constraints, and manufacturing costs to create an efficient and economical universal joint.
7. Application-Specific Considerations: Designing universal joints for specific applications may introduce additional challenges. Factors such as environmental conditions, temperature extremes, exposure to corrosive substances, high-speed operation, or heavy-duty applications need to be carefully considered and addressed in the design and material selection process. Customization and adaptation of universal joints to meet unique application requirements can pose additional challenges.
Addressing these challenges in the design and manufacturing process requires a combination of engineering expertise, material science knowledge, advanced manufacturing techniques, and thorough testing and validation procedures. Collaboration between design engineers, manufacturing engineers, and quality control personnel is crucial to ensure the successful development and production of reliable universal joints.
In summary, the potential challenges in designing and manufacturing universal joints include misalignment compensation, torque transmission, lubrication and sealing, bearing design and wear, manufacturability, cost and size optimization, and application-specific considerations. Overcoming these challenges requires careful engineering, precision manufacturing processes, and consideration of various factors to achieve high-performance and reliable universal joints.
How does a constant-velocity (CV) joint differ from a traditional universal joint?
A constant-velocity (CV) joint differs from a traditional universal joint in several ways. Here’s a detailed explanation:
A traditional universal joint (U-joint) and a constant-velocity (CV) joint are both used for transmitting torque between non-aligned or angularly displaced shafts. However, they have distinct design and operational differences:
- Mechanism: The mechanism of torque transmission differs between a U-joint and a CV joint. In a U-joint, torque is transmitted through a set of intersecting shafts connected by a cross or yoke arrangement. The angular misalignment between the shafts causes variations in speed and velocity, resulting in fluctuating torque output. On the other hand, a CV joint uses a set of interconnected elements, typically ball bearings or roller bearings, to maintain a constant velocity and torque output, regardless of the angular displacement between the input and output shafts.
- Smoothness and Efficiency: CV joints offer smoother torque transmission compared to U-joints. The constant velocity output of a CV joint eliminates speed fluctuations, reducing vibrations and allowing for more precise control and operation. This smoothness is particularly advantageous in applications where precise motion control and uniform power delivery are critical. Additionally, CV joints operate with higher efficiency as they minimize energy losses associated with speed variations and friction.
- Angular Capability: While U-joints are capable of accommodating larger angular misalignments, CV joints have a limited angular capability. U-joints can handle significant angular displacements, making them suitable for applications with extreme misalignment. In contrast, CV joints are designed for smaller angular displacements and are typically used in applications where constant velocity is required, such as automotive drive shafts.
- Operating Angles: CV joints can operate at larger operating angles without significant loss in torque or speed. This makes them well-suited for applications that require larger operating angles, such as front-wheel drive vehicles. U-joints, on the other hand, may experience speed fluctuations and reduced torque transmission capabilities at higher operating angles.
- Complexity and Size: CV joints are generally more complex in design compared to U-joints. They consist of multiple components, including inner and outer races, balls or rollers, cages, and seals. This complexity often results in larger physical dimensions compared to U-joints. U-joints, with their simpler design, tend to be more compact and easier to install in tight spaces.
In summary, a constant-velocity (CV) joint differs from a traditional universal joint (U-joint) in terms of torque transmission mechanism, smoothness, efficiency, angular capability, operating angles, complexity, and size. CV joints provide constant velocity output, smoother operation, and higher efficiency, making them suitable for applications where precise motion control and uniform power delivery are essential. U-joints, with their ability to accommodate larger angular misalignments, are often preferred for applications with extreme misalignment requirements.
What is a universal joint and how does it work?
A universal joint, also known as a U-joint, is a mechanical coupling that allows for the transmission of rotary motion between two shafts that are not in line with each other. It is commonly used in applications where shafts need to transmit motion at angles or around obstacles. The universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. Let’s explore how it works:
A universal joint typically comprises four main components:
- Input Shaft: The input shaft is the shaft that provides the initial rotary motion.
- Output Shaft: The output shaft is the shaft that receives the rotary motion from the input shaft.
- Yoke: The yoke is a cross-shaped or H-shaped component that connects the input and output shafts. It consists of two arms perpendicular to each other.
- Bearings: Bearings are located at the ends of each arm of the yoke. These bearings allow for smooth rotation and reduce friction between the yoke and the shafts.
When the input shaft rotates, it causes the yoke to rotate along with it. Due to the perpendicular arrangement of the arms, the output shaft connected to the other arm of the yoke experiences rotary motion at an angle to the input shaft.
The universal joint works by accommodating the misalignment between the input and output shafts. As the input shaft rotates, the yoke allows the output shaft to rotate freely and continuously despite any angular displacement or misalignment between the two shafts. This flexibility of the universal joint enables torque to be transmitted smoothly between the shafts while compensating for their misalignment.
During operation, the bearings at the ends of the yoke arms allow for the rotation of the yoke and the connected shafts. The bearings are often enclosed within a housing or cross-shaped cap to provide protection and retain lubrication. The design of the bearings allows for a range of motion and flexibility, allowing the yoke to move and adjust as the shafts rotate at different angles.
The universal joint is commonly used in various applications, including automotive drivelines, industrial machinery, and power transmission systems. It allows for the transmission of rotary motion at different angles and helps compensate for misalignment, eliminating the need for perfectly aligned shafts.
It is important to note that universal joints have certain limitations. They introduce a small amount of backlash or play, which can affect precision and accuracy in some applications. Furthermore, at extreme angles, the operating angles of the universal joint may become limited, potentially causing increased wear and reducing its lifespan.
Overall, the universal joint is a versatile mechanical coupling that enables the transmission of rotary motion between misaligned shafts. Its ability to accommodate angular displacement and misalignment makes it a valuable component in numerous mechanical systems.
editor by CX 2024-04-29
China factory Factory Price Auto Spare Parts Automatic Transmission Universal Joint Guis-67 Cross Bearing
Product Description
factory price Auto Spare Parts Automatic Transmission Universal Joint GUIS-67 Cross Bearing Auto Parts
Type | Universal Joint |
Brand | TFN |
Model | GUIS-67 |
Place of Origin | ZheJiang ,China |
Precision Rating | P0 p1 P4 P5 |
Seals type | open |
Material | C45 carbon steel,40Cr steel,20CrMnTi |
Appication | Tractor |
Lubration | oil grease |
package | Single Box |
Vibration | V1 V2 V3 |
Service | OEM Customized Services |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Contact Angle: | 15° |
---|---|
Aligning: | Non-Aligning Bearing |
Separated: | Unseparated |
Rows Number: | Multiple |
Load Direction: | Radial Bearing |
Material: | Bearing Steel |
Samples: |
US$ 19.4/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do you retrofit an existing mechanical system with a universal joint?
Retrofitting an existing mechanical system with a universal joint involves modifying or adding components to integrate the universal joint into the system. Here’s a detailed explanation of the retrofitting process:
To retrofit an existing mechanical system with a universal joint, follow these steps:
- Evaluate the System: Begin by thoroughly assessing the existing mechanical system. Understand its design, components, and the type of motion it requires. Identify the specific area where the universal joint needs to be incorporated and determine the necessary modifications or additions.
- Design Considerations: Take into account the operating conditions, load requirements, and available space in the system. Consider the size, type, and specifications of the universal joint that will best suit the retrofit. This includes selecting the appropriate joint size, torque capacity, operating angles, and any additional features required for compatibility with the system.
- Measurements and Alignment: Accurately measure the dimensions and alignment of the existing system, particularly the shafts involved in the retrofit. Ensure that the required modifications or additions align properly with the system’s existing components. Precise measurements are crucial for a successful retrofit.
- Modify Existing Components: In some cases, it may be necessary to modify certain components of the existing system to accommodate the universal joint. This could involve machining or welding to create attachment points or adjust the dimensions of the system’s components to ensure proper fitment of the universal joint and its associated parts.
- Integrate the Universal Joint: Install the universal joint into the retrofit area according to the system’s requirements and design considerations. This involves securely attaching the universal joint to the modified or existing components using appropriate fasteners or connection methods as specified by the manufacturer. Ensure that the joint is properly aligned with the shafts to facilitate smooth and efficient motion transfer.
- Supporting Components: Depending on the specific retrofit requirements, additional supporting components may be needed. This can include yokes, bearings, shaft couplings, or guards to ensure proper functioning and protection of the universal joint assembly and the overall system.
- Testing and Adjustment: Once the retrofit is complete, thoroughly test the system to ensure that the universal joint operates smoothly and meets the desired performance requirements. Make any necessary adjustments to align the system and optimize its functionality. It is essential to verify that the retrofit does not introduce any adverse effects or compromise the overall operation of the mechanical system.
Retrofitting an existing mechanical system with a universal joint requires careful planning, precise measurements, and proper integration of the joint into the system. By following these steps and considering the design considerations and compatibility, it is possible to successfully incorporate a universal joint into an existing mechanical system and enhance its functionality and performance.
Are universal joints suitable for both high-torque and high-speed applications?
Universal joints have certain limitations when it comes to high-torque and high-speed applications. Here’s a detailed explanation:
Universal joints are commonly used to transmit torque between non-aligned or angularly displaced shafts. They offer advantages in terms of flexibility and compactness. However, their suitability for high-torque and high-speed applications depends on several factors:
- High-Torque Applications: Universal joints can handle high-torque applications to a certain extent. The torque capacity of a universal joint depends on factors such as the material strength, joint size, and design. In general, larger universal joints with stronger materials have higher torque ratings. However, when subjected to extremely high torques, universal joints may experience increased stress, accelerated wear, and potential failure. In such cases, alternative power transmission solutions like gearboxes or direct drives may be more suitable for handling high-torque applications.
- High-Speed Applications: Universal joints may not be the ideal choice for high-speed applications. At high rotational speeds, universal joints can experience several challenges. These include increased vibration, imbalance, and decreased precision. The design characteristics of universal joints, such as the presence of backlash and variations in joint geometry, can become more pronounced at high speeds, leading to reduced performance and potential failure. In high-speed applications, alternative solutions like flexible couplings or constant velocity (CV) joints are often preferred due to their ability to provide smoother operation, improved balance, and constant velocity output.
It’s important to note that the specific torque and speed limitations of a universal joint can vary depending on factors such as the joint’s size, design, quality, and the application’s requirements. Manufacturers provide torque and speed ratings for their universal joints, and it’s crucial to adhere to these specifications for reliable and safe operation.
In summary, while universal joints can handle moderate torque and speed levels, they may not be suitable for extremely high-torque or high-speed applications. Understanding the limitations of universal joints and considering alternative power transmission solutions when necessary can help ensure optimal performance and reliability in different operating conditions.
Can you provide examples of vehicles that use universal joints?
Universal joints are commonly used in various types of vehicles for transmitting torque between shafts that are not in a straight line or are at an angle to each other. Here are some examples of vehicles that use universal joints:
- Automobiles: Universal joints are widely used in automobiles for transmitting torque from the engine to the rear wheels in rear-wheel drive vehicles. They are commonly found in the driveline, connecting the transmission or gearbox to the driveshaft, and in the driveshaft itself. Universal joints are also used in front-wheel drive vehicles for transmitting torque from the transaxle to the front wheels.
- Trucks and commercial vehicles: Universal joints are utilized in trucks and commercial vehicles for transmitting torque between various components of the drivetrain. They can be found in the driveshaft, connecting the transmission or gearbox to the rear differential or axle assembly.
- Off-road vehicles and SUVs: Universal joints are extensively used in off-road vehicles and SUVs that have four-wheel drive or all-wheel drive systems. They are employed in the driveline to transmit torque from the transmission or transfer case to the front and rear differentials or axle assemblies.
- Military vehicles: Universal joints are utilized in military vehicles for transmitting torque between different components of the drivetrain, similar to their use in trucks and off-road vehicles. They provide reliable torque transfer in demanding off-road and rugged environments.
- Agricultural and construction machinery: Universal joints are commonly found in agricultural and construction machinery, such as tractors, combines, excavators, loaders, and other heavy equipment. They are used in the drivelines and power take-off (PTO) shafts to transmit torque from the engine or motor to various components, attachments, or implements.
- Marine vessels: Universal joints are employed in marine vessels for transmitting torque between the engine and the propeller shaft. They are used in various types of watercraft, including boats, yachts, ships, and other marine vessels.
- Aircraft: Universal joints are utilized in certain aircraft applications, such as helicopters, to transmit torque between the engine and the rotor assembly. They allow for angular displacement and smooth transmission of power in the complex rotor systems of helicopters.
- Industrial machinery: Universal joints find applications in various types of industrial machinery, including manufacturing equipment, conveyors, pumps, and other power transmission systems. They enable torque transmission between non-aligned or angularly displaced shafts in industrial settings.
Please note that the specific usage of universal joints may vary depending on the vehicle design, drivetrain configuration, and application requirements. Different types of universal joints, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, may be employed based on the specific needs of the vehicle or machinery.
editor by CX 2024-04-26
China Custom Universal Joints for CZPT CZPT
Product Description
Spicer | P (mm) | R (mm) | Caterpillar | Precision | Rockwell | GKN | Alloy | Neapcon | Serie | Bearing type |
5-2002X | 33.34 | 79 | 644683 | 951 | CP2002 | HS520 | 1-2171 | 2C | 4LWT | |
5-2117X | 33.34 | 79 | 316117 | 994 | HS521 | 1-2186 | 2C | 4LWD | ||
5-2116X | 33.34 | 79 | 6S6902 | 952 | CP2116 | 1063 | 2C | 2LWT,2LWD | ||
5-3000X | 36.5 | 90.4 | 5D9153 | 536 | HS530 | 1711 | 3-3152 | 3C | 4LWT | |
5-3014X | 36.5 | 90.4 | 9K1976 | 535 | HS532 | 3C | 2LWT,2LWD | |||
5-4143X | 36.5 | 108 | 6K 0571 | 969 | HS545 | 1689 | 3-4143 | 4C | 4HWD | |
5-4002X | 36.5 | 108 | 6F7160 | 540 | CP4002 | HS540 | 1703 | 3-4138 | 4C | 4LWT |
5-4123X | 36.5 | 108 | 9K3969 | 541 | CP4101 | HS542 | 1704 | 3-4123 | 4C | 2LWT,2LWD |
5-4140X | 36.5 | 108 | 5M800 | 929 | CP4130 | HS543 | 3-4140 | 4C | 2LWT,2HWD | |
5-1405X | 36.5 | 108 | 549 | 1708 | 4C | 4LWD | ||||
5-4141X | 36.5 | 108 | 7M2695 | 996 | 4C | 2LWD,2HWD | ||||
5-5177X | 42.88 | 115.06 | 2K3631 | 968 | CP5177 | HS555 | 1728 | 4-5177 | 5C | 4HWD |
5-5000X | 42.88 | 115.06 | 7J5251 | 550 | CP5122 | HS550 | 1720 | 4-5122 | 5C | 4LWT |
5-5121X | 42.88 | 115.06 | 7J5245 | 552 | CP5101 | HS552 | 1721 | 4-5127 | 5C | 2LWT,2LWD |
5-5173X | 42.88 | 115.06 | 933 | HS553 | 1722 | 4-5173 | 5C | 2LWT,2HWD | ||
5-5000X | 42.88 | 115.06 | 999 | 5C | 4HWD | |||||
5-5139X | 42.88 | 115.06 | 5C | 2LWD,2HWD | ||||||
5-6102X | 42.88 | 140.46 | 643633 | 563 | CP62N-13 | HS563 | 1822 | 4-6114 | 6C | 2LWT,2HWD |
5-6000X | 42.88 | 140.46 | 641152 | 560 | CP62N-47 | HS560 | 1820 | 4-6143 | 6C | 4LWT |
5-6106X | 42.88 | 140.46 | 1S9670 | 905 | CP62N-49 | HS565 | 1826 | 4-6128 | 6C | 4HWD |
G5-6103X | 42.88 | 140.46 | 564 | 1823 | 4-6103 | 6C | 2LWT,2LWD | |||
G5-6104X | 42.88 | 140.46 | 566 | 1824 | 4-6104 | 6C | 4LWD | |||
G5-6149X | 42.88 | 140.46 | 6C | 2LWD,2HWD | ||||||
5-7105X | 49.2 | 148.38 | 6H2577 | 927 | CP72N-31 | HS575 | 1840 | 5-7126 | 7C | 4HWD |
5-7000X | 49.2 | 148.32 | 8F7719 | 570 | CP72N-32 | HS570 | 1841 | 5-7205 | 7C | 4LWT |
5-7202X | 49.2 | 148.38 | 7J5242 | 574 | CP72N-33 | HS573 | 1843 | 5-7207 | 7C | 2LWT,2HWD |
5-7203X | 49.2 | 148.38 | 575 | CP72N-55 | 5-7208 | 7C | 4LWD | |||
5-7206X | 49.2 | 148.38 | 572 | CP72N-34 | 1842 | 5-7206 | 7C | 2LWT,2LWD | ||
5-7204X | 49.2 | 148.38 | 576 | CP72N-57 | 5-7209 | 7C | 2LWD,2HWD | |||
5-8105X | 49.2 | 206.32 | 6H2579 | 928 | CP78WB-2 | HS585 | 1850 | 6-8113 | 8C | 4HWD |
5-8200X | 49.2 | 206.32 | 581 | CP82N-28 | 1851 | 6-8205 | 8C | 4LWT |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Condition: | New |
---|---|
Certification: | ISO, Ts16949 |
Structure: | Single |
Material: | 20cr |
Type: | Universal Joint |
Transport Package: | Box + Plywood Case |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What is the role of a yoke in a universal joint assembly?
A yoke plays a crucial role in a universal joint assembly. Here’s a detailed explanation:
In a universal joint assembly, a yoke is a mechanical component that connects the universal joint to the shafts it is intended to transmit motion between. It acts as a link, providing a secure attachment point and facilitating the transfer of rotational motion. The yoke is typically made of strong and durable materials such as steel or cast iron.
The role of a yoke in a universal joint assembly can be summarized as follows:
- Connection Point: The yoke serves as a connection point between the universal joint and the shafts it is joining. It provides a secure and rigid attachment, ensuring that the universal joint and shafts operate as a cohesive unit. The yoke is designed to fit onto the shafts and is often secured using fasteners such as bolts or retaining rings.
- Transmitting Torque: One of the primary functions of the yoke is to transmit torque from one shaft to another through the universal joint assembly. When torque is applied to one shaft, the universal joint transfers it to the other shaft via the yoke. The yoke must be strong enough to handle the torque generated by the system and effectively transfer it without deformation or failure.
- Supporting Radial Loads: In addition to transmitting torque, the yoke also provides support for radial loads. Radial loads are forces acting perpendicular to the shaft’s axis. The yoke, along with other components in the universal joint assembly, helps distribute these loads and prevent excessive stress on the shafts and universal joint. This support ensures stable operation and prevents premature wear or failure.
- Alignment and Stability: The yoke contributes to the alignment and stability of the universal joint assembly. It helps maintain the proper positioning of the universal joint in relation to the shafts, ensuring that the rotational motion is transmitted accurately and efficiently. The yoke’s design and fitment play a crucial role in minimizing misalignment and maintaining the integrity of the assembly.
- Compatibility and Adaptability: Yokes are available in various shapes, sizes, and configurations to accommodate different shaft diameters, types, and connection methods. This versatility allows for compatibility with a wide range of applications and facilitates the adaptation of the universal joint assembly to specific requirements. The yoke’s design may include features such as keyways, splines, or flanges to suit different shaft and mounting arrangements.
In summary, the yoke in a universal joint assembly serves as a connection point, transmits torque, supports radial loads, contributes to alignment and stability, and provides compatibility and adaptability. It is an essential component that enables the efficient and reliable transmission of rotational motion between shafts in various applications.
How do you address the effect of temperature variations on a universal joint?
Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:
Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:
- Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
- Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
- Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
- Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
- Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.
It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.
In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.
How do you choose the right size universal joint for your application?
Choosing the right size universal joint for a specific application involves considering several factors to ensure proper function and performance. Here are key steps to guide you in selecting the appropriate size:
- Identify the application requirements: Determine the specific requirements of your application, such as the maximum torque, speed, angular misalignment, and operating conditions. Understanding these parameters will help in selecting a universal joint that can handle the demands of your application.
- Shaft sizes and connection type: Measure the diameter and type of the shafts that need to be connected by the universal joint. Ensure that the joint you choose has compatible connection options for the shafts, such as keyways, splines, or smooth bores.
- Load capacity: Consider the load capacity or torque rating of the universal joint. It should be capable of handling the maximum torque expected in your application without exceeding its rated capacity. Refer to the manufacturer’s specifications and guidelines for load ratings.
- Operating speed: Take into account the operating speed of your application. Universal joints have speed limitations, and exceeding these limits can result in premature wear, heat generation, and failure. Ensure that the selected joint can handle the required rotational speed without compromising performance.
- Angular misalignment: Determine the maximum angular misalignment between the shafts in your application. Different types of universal joints have varying degrees of angular misalignment capabilities. Choose a joint that can accommodate the required misalignment while maintaining smooth operation.
- Environmental conditions: Assess the environmental conditions in which the universal joint will operate. Consider factors such as temperature, humidity, exposure to chemicals or contaminants, and the presence of vibrations or shocks. Select a joint that is designed to withstand and perform reliably in the specific environmental conditions of your application.
- Consult manufacturer guidelines: Refer to the manufacturer’s guidelines, catalog, or technical documentation for the universal joint you are considering. Manufacturers often provide detailed information on the selection criteria, including sizing charts, application guidelines, and compatibility tables. Following the manufacturer’s recommendations will ensure proper sizing and compatibility.
By following these steps and considering the specific requirements of your application, you can choose the right size universal joint that will provide reliable and efficient operation in your system.
editor by CX 2024-04-26
China manufacturer OEM Quality Driveshaft Auto Universal CV Joint Axle for CZPT CZPT CZPT CZPT Honda Mazda CZPT CZPT CZPT Daihatsu Suzuki FIAT Opel Peugeot Renault
Product Description
The function of the auto CV JOINT universal joint:
The inner cv joint is connected to the gearbox differential, and the outer ball cage is connected to the wheel. The function of the outer cv joint is the function of the outer cv joint, no matter it is power output or when the vehicle is turning.
What to pay attention to when using the car cv joint dust cover boot:
1. The cv joint plays an important role in the transmission system of the car. It can transmit power from the engine to the wheels, so the cv joint should be well lubricated and dust-proof. Once the cv joint dust cover boot is broken, it needs to be replaced in time. .
2. When there are regular abnormal noises when the car turns or bumps, you can check whether the dust cover boot of the car cv joint is broken, because the dust cover boot of the cv joint is broken, and it is easy for dust to enter and damage the cv joint.
3. If there is no problem with the dust cover boot of the car cv joint, you should go to the auto repair shop to check whether the cv joint is broken by a professional master. If the cv joint is broken, you need to replace it, and it is best to replace the cv joint dust cover boot .
What caused the cv joint to be damaged?
1. The dust cover boot is damaged
The service life of the cv joint is closely related to the dust cover. The dust cover boot can effectively protect the internal grease of the cv joint from being polluted by the outside and being lost to the outside. Once the dust cover is damaged, if it is not discovered by the car owner in time, it will cause the inside of the cv joint to be polluted by sand, stones and muddy water from the outside, and it will be damaged quickly.
2. Long-term wading into water
In some models, the small clips of the dust jackets are not tightened very strongly. It can meet the daily splash waterproof, but if the water is too deep for a long time, it is easy to cause water to enter the cv joint. It is not easy for the car owner to find out after the water enters, which will lead to wear and tear inside the cv joint.
HDAG brand CV JOINTS universal joint FEATURE:
1. Bell-shaped shell: CF53 ball cage special steel or 55# steel, after forging + normalizing treatment, good rigidity, high strength and wear resistance. HDAG adopts a double-arc four-point contact structure, which is the most ideal channel structure for the outer ball cage at present.
2. Inner wheel and cage: applied material of 20CrMnTi (gear steel) + carburizing (the carburizing layer is controlled at 0.6mm);Compared with 20Cr, 20CrMnTi has the advantages of strong hardenability and permeability.
3. CV JOINTS Grease: molybdenum disulfide lithium base grease, molybdenum disulfide has good lubricating properties and excellent wear resistance, the lithium base grease type added with MoS2 has a good effect on metal parts that are directly stamped and formed without grinding and deep processing Running function; high and low temperature can work normally at -30°C-120°C.
4. CV JOINTS Dust cover boot: Neoprene (polychloroprene) + nitrile rubber, with good oil and chemical resistance, flame resistance, CHINAMFG resistance, weather resistance (-40 ° C ~ 120 ° C), high tensile strength Tensile strength and other properties
5. Steel ball: adopt bearing steel GCr15
6. Inner CV JOINT universal joint bolts: 35CrMo or 40Cr+hot forging+quenching and tempering, the performance grade is 12.0, the hardness value HV385~435 (HRC39-44) is the same standard as the original OEM parts, the torsional strength is high
Product description
Driveshaft cv joint axle for CHINAMFG Lexus Infiniti Corolla Yaris RAV4 Prius Hiace Prado Pickup Matrix Wish Highlander LandCruiser Tacoma 4Runner Avensis Vios honda Accord CRV Odyssey Civic City CHINAMFG tiida latio versa CHINAMFG L2
L200 TRITON C/ABS 08/
L200 TRITON C/ABS 08/
L200 SPORT HPE C/ABS-03/07
L200 SPORT HPE C/ABS-03/07
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Condition: | New |
---|---|
Color: | Natural Color |
Certification: | CE, ISO |
Car Model 6: | Toyota Lada Mitsubishi Nissan Isuzu Honda Mazda |
Car Model 1: | for Hyundai KIA Daewoo Daihatsu Suzuki |
Car Model 3: | for FIAT Opel Peugeot Renault Citroen |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in conveyor systems?
Yes, universal joints can be used in conveyor systems, and they offer several advantages in certain applications. Here’s a detailed explanation:
A conveyor system is a mechanical handling equipment used to transport materials from one location to another. It consists of various components, including belts, pulleys, rollers, and drives, that work together to facilitate the movement of items. Universal joints can be incorporated into conveyor systems to transmit rotational motion between different sections or components of the conveyor.
Here are some key points to consider regarding the use of universal joints in conveyor systems:
- Misalignment Compensation: Conveyor systems often require flexibility to accommodate misalignment between different sections or components due to factors such as uneven loading, structural variations, or changes in direction. Universal joints are capable of compensating for angular misalignment and can handle variations in the alignment of conveyor sections, allowing for smooth and efficient power transmission.
- Smooth Operation: Universal joints provide smooth rotation and can help minimize vibration and shock in conveyor systems. This is especially beneficial when conveying delicate or sensitive materials that require gentle handling. The design of universal joints with needle bearings or other low-friction components helps reduce frictional losses and ensures smooth operation, resulting in less wear and tear on the conveyor system.
- Compact Design: Universal joints have a compact and versatile design, making them suitable for conveyor systems where space is limited. They can be integrated into tight spaces and allow for flexibility in the layout and configuration of the system. This compactness also contributes to easier installation and maintenance of the conveyor system.
- Variable Operating Angles: Universal joints can operate at varying angles, allowing conveyor systems to navigate curves, bends, or changes in direction. This flexibility in operating angles enables the conveyor system to adapt to the specific layout and requirements of the application, enhancing its overall efficiency and functionality.
- Load Transmission: Universal joints are capable of transmitting both torque and radial loads, which is important in conveyor systems. They can handle the forces exerted by the materials being transported and distribute those forces evenly, preventing excessive stress on the system’s components. This feature helps ensure reliable and efficient material handling in the conveyor system.
- Application Considerations: While universal joints offer advantages in conveyor systems, it is essential to consider the specific application requirements and operating conditions. Factors such as the type of materials being conveyed, the speed and load capacity of the system, and environmental factors should be taken into account when selecting and designing the conveyor system with universal joints.
In summary, universal joints can be effectively used in conveyor systems to provide misalignment compensation, smooth operation, compact design, variable operating angles, and reliable load transmission. By incorporating universal joints into conveyor systems, it is possible to enhance flexibility, performance, and efficiency in material handling applications.
What materials are commonly used in the construction of universal joints?
Universal joints are constructed using various materials that provide strength, durability, and resistance to wear and fatigue. Here’s a detailed explanation:
The choice of materials for universal joints depends on factors such as the application, load requirements, operating conditions, and cost considerations. Here are some commonly used materials:
- Steel: Steel is one of the most common materials used in universal joint construction. Alloy steels, such as 4140 or 4340, are often employed due to their high strength, toughness, and resistance to wear and fatigue. Steel universal joints can withstand heavy loads and harsh operating conditions, making them suitable for various industrial applications.
- Stainless Steel: Stainless steel is chosen for universal joints when corrosion resistance is a critical requirement. Stainless steel alloys, such as 304 or 316, offer excellent resistance to rust, oxidation, and chemical corrosion. These joints are commonly used in applications where exposure to moisture, chemicals, or harsh environments is expected.
- Cast Iron: Cast iron is occasionally used in universal joints, particularly in older or specialized applications. Cast iron provides good strength and wear resistance, but it is generally heavier and less flexible than steel. It may be used in specific situations where its properties are advantageous, such as in large industrial machinery.
- Aluminum: Aluminum universal joints are utilized when weight reduction is a priority. Aluminum alloys offer a good balance of strength and lightweight properties. These joints are commonly found in applications where weight savings are crucial, such as aerospace, automotive, or robotics.
- Bronze: Bronze is sometimes used for bearings or bushings within universal joints. Bronze alloys provide good wear resistance, low friction, and the ability to withstand high temperatures. They are often employed in applications where self-lubricating properties and resistance to galling are required. Bronze bearings can be found in universal joints used in heavy machinery, marine equipment, or agricultural machinery.
It’s worth noting that the specific choice of materials may vary depending on the manufacturer, application requirements, and industry standards. Different combinations of materials may also be used for different components within a universal joint, such as the yokes, crosses, bearings, or seals, to optimize performance and durability.
In summary, universal joints are commonly constructed using materials such as steel, stainless steel, cast iron, aluminum, and bronze. The selection of materials depends on factors like strength, durability, wear resistance, corrosion resistance, weight considerations, and specific application requirements.
What lubrication is required for a universal joint?
Proper lubrication is crucial for the smooth and efficient operation of a universal joint. The type and amount of lubrication required may vary depending on the specific design and manufacturer’s recommendations. Here are some general guidelines:
- High-quality lubricant: It is important to use a high-quality lubricant that is specifically recommended for universal joints. Consult the manufacturer’s guidelines or technical documentation to determine the appropriate lubricant type and viscosity for your universal joint.
- Grease or oil: Universal joints can be lubricated with either grease or oil, depending on the design and application requirements. Grease is commonly used as it provides good lubrication and helps to seal out contaminants. Oil can be used in applications that require constant lubrication or when specified by the manufacturer.
- Quantity of lubrication: Apply the recommended quantity of lubricant as specified by the manufacturer. Over-greasing or under-greasing can lead to problems such as excessive heat, increased friction, or inadequate lubrication. Follow the manufacturer’s guidelines to ensure the optimal amount of lubricant is applied.
- Lubrication points: Identify the lubrication points on the universal joint. These are typically located at the cross bearings or bearing cups where the cross interfaces with the yoke. Apply the lubricant directly to these points to ensure proper lubrication of the moving components.
- Lubrication intervals: Establish a lubrication schedule based on the operating conditions and manufacturer’s recommendations. Regularly inspect and lubricate the universal joint according to the specified intervals. Factors such as operating speed, load, temperature, and environmental conditions may influence the frequency of lubrication.
- Re-lubrication: In some cases, universal joints may have provisions for re-lubrication. This involves purging old lubricant and replenishing it with fresh lubricant. Follow the manufacturer’s instructions for the re-lubrication procedure, including the recommended interval and method.
- Environmental considerations: Consider the operating environment when selecting the lubricant. Factors such as temperature extremes, exposure to moisture or chemicals, and the presence of contaminants can affect the choice and performance of the lubricant. Choose a lubricant that is suitable for the specific environmental conditions of your application.
- Maintenance and inspection: Regularly inspect the universal joint for signs of inadequate lubrication, excessive wear, or contamination. Monitor the temperature of the joint during operation, as excessive heat can indicate insufficient lubrication. Address any lubrication issues promptly to ensure the proper functioning and longevity of the universal joint.
Always refer to the manufacturer’s recommendations and guidelines for lubrication specific to your universal joint model. Following the proper lubrication practices will help optimize the performance, reduce wear, and extend the lifespan of the universal joint.
editor by CX 2024-04-25
China wholesaler Ws Type Universal Joints Coupling with High Precision
Product Description
WS Type Universal Joint Shaft
Features:
1. It is suitable for transmission coupling space on the same plane of 2 axis angle beta β≤45°, the nominal torque transmission 11.2-1120N.
2.The WSD type is a single cross universal coupling, and the WS type is a double cross universal coupling.
3.Each section between the largest axis angle 45º.
4.The finished hole H7, according to the requirements of keyseating, 6 square hole and square hole.
5.The angle between the 2 axes is allowed in a limited range as the work requirements change.
NO |
Tn/N·m |
d(H7) |
D |
L0 |
L |
L1 |
m/kg |
I/kg·m2 |
||||||||||
WSD |
WS |
WSD |
WS |
WSD |
WS |
|||||||||||||
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
Y |
J1 |
|||||
WS1 WSD1 |
11.2 |
8 |
16 |
60 |
– |
80 |
– |
20 |
– |
20 |
0.23 |
– |
0.32 |
– |
0.06 |
– |
0.08 |
– |
9 |
||||||||||||||||||
10 |
66 |
60 |
86 |
80 |
25 |
22 |
0.2 |
0.29 |
0.05 |
0.07 |
||||||||
WS2 WSD2 |
22.4 |
10 |
20 |
70 |
64 |
96 |
90 |
26 |
0.64 |
0.57 |
0.93 |
0.88 |
0.1 |
0.09 |
0.15 |
0.15 |
||
11 |
||||||||||||||||||
12 |
84 |
74 |
110 |
100 |
32 |
27 |
||||||||||||
WS3 WSD3 |
45 |
12 |
25 |
90 |
80 |
122 |
112 |
32 |
1.45 |
1.3 |
2.1 |
1.95 |
0.17 |
0.15 |
0.24 |
0.22 |
||
14 |
||||||||||||||||||
WS4 WSD4 |
71 |
16 |
32 |
116 |
82 |
154 |
130 |
42 |
30 |
38 |
5.92 |
4.86 |
8.56 |
0.48 |
0.39 |
0.32 |
0.56 |
0.49 |
18 |
||||||||||||||||||
WS5 WSD5 |
140 |
19 |
40 |
144 |
116 |
192 |
164 |
48 |
16.3 |
12.9 |
24 |
20.6 |
0.72 |
0.59 |
1.04 |
0.91 |
||
20 |
52 |
38 |
||||||||||||||||
22 |
||||||||||||||||||
WS6 WSD6 |
280 |
24 |
50 |
152 |
124 |
210 |
182 |
52 |
38 |
58 |
45.7 |
36.7 |
68.9 |
59.7 |
1.28 |
1.03 |
1.89 |
1.64 |
25 |
172 |
136 |
330 |
194 |
62 |
44 |
||||||||||||
28 |
||||||||||||||||||
WS7 WSD7 |
560 |
30 |
60 |
226 |
182 |
296 |
252 |
82 |
60 |
70 |
148 |
117 |
207 |
177 |
2.82 |
2.31 |
3.9 |
3.38 |
32 |
||||||||||||||||||
35 |
||||||||||||||||||
WS8 WSD8 |
1120 |
38 |
75 |
240 |
196 |
332 |
288 |
92 |
396 |
338 |
585 |
525 |
5.03 |
4.41 |
7.25 |
6.63 |
||
40 |
300 |
244 |
392 |
336 |
112 |
84 |
||||||||||||
42 |
Detailed Photos
Company Profile
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective.
Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.
5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.
FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
Q 9: What’s your payment?
A:1) T/T.
♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Standard Or Nonstandard: | Standard |
---|---|
Shaft Hole: | 19-32 |
Torque: | >80N.M |
Bore Diameter: | 14mm |
Speed: | 9000r/M |
Structure: | Flexible |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in both horizontal and vertical orientations?
Yes, universal joints can be used in both horizontal and vertical orientations. Here’s a detailed explanation:
Universal joints are mechanical devices designed to transmit rotary motion between two shafts that are not in a straight line alignment. They consist of a cross-shaped or H-shaped yoke with bearings at each end that connect to the shafts. The design of universal joints allows them to accommodate angular misalignment between the shafts, making them suitable for various applications, including both horizontal and vertical orientations.
When used in a horizontal orientation, universal joints can transmit rotational motion between shafts that are positioned at different angles or offsets. They are commonly found in drivetrain systems of vehicles, where they transfer power from the engine to the wheels, even when the drivetrain components are not perfectly aligned. In this configuration, universal joints can effectively handle the torque requirements and misalignment caused by uneven terrain, suspension movement, or steering angles.
In a vertical orientation, universal joints can also be utilized to transfer rotational motion between shafts that are positioned vertically. This arrangement is often seen in applications such as industrial equipment, machinery, or agricultural implements. For example, in a vertical power transmission system, a universal joint can be used to connect a vertical driving shaft to a vertical driven shaft, enabling power transfer and accommodating any angular misalignment that may occur due to variations in shaft positions or vibrations.
It’s important to note that the specific design and selection of universal joints for different orientations should consider factors such as the torque requirements, operating conditions, and the manufacturer’s specifications. The orientation of the universal joint may affect factors such as lubrication, load-bearing capacity, and the need for additional support or stabilization mechanisms.
In summary, universal joints can be used in both horizontal and vertical orientations. Their ability to accommodate angular misalignment makes them versatile components for transmitting rotary motion between shafts that are not in a straight line alignment, regardless of the orientation.
What are the signs of a failing universal joint and how do you diagnose it?
Diagnosing a failing universal joint involves identifying specific signs and symptoms that indicate potential problems. Here’s a detailed explanation:
A failing universal joint can exhibit several signs that indicate a need for inspection, repair, or replacement. Some common signs of a failing universal joint include:
- Clunking or Knocking Noise: One of the most noticeable signs is a clunking or knocking noise coming from the universal joint area. This noise is often more pronounced during acceleration, deceleration, or when changing gears. The noise may indicate excessive play or wear in the joint’s components.
- Vibration: A failing universal joint can cause vibrations that are felt throughout the vehicle. These vibrations may be more noticeable at higher speeds or under load conditions. The vibrations can be a result of imbalanced driveshafts or misaligned yokes due to worn or damaged universal joint bearings.
- Difficulty in Power Transfer: As a universal joint deteriorates, power transfer from the transmission to the driven wheels may become less efficient. This can lead to a decrease in acceleration, reduced towing capacity, or difficulty in maintaining consistent speed. Loss of power transfer efficiency can occur due to worn or seized universal joint components.
- Visible Wear or Damage: A visual inspection of the universal joint can reveal signs of wear or damage. Look for excessive play or movement in the joint, rust or corrosion on the components, cracked or broken yokes, or worn-out bearings. Any visible signs of damage indicate a potential issue with the universal joint.
- Grease Leakage: Universal joints are typically lubricated with grease to reduce friction and wear. If you notice grease leakage around the joint or on the surrounding components, it may indicate a failing seal or a damaged bearing, which can lead to joint failure.
To diagnose a failing universal joint, the following steps can be taken:
- Perform a visual inspection: Inspect the universal joint and surrounding components for any visible signs of wear, damage, or leakage. Pay attention to the condition of the yokes, bearings, seals, and grease fittings.
- Check for excessive play: While the vehicle is on a level surface and the parking brake is engaged, attempt to move the driveshaft back and forth. Excessive play or movement in the universal joint indicates wear or looseness.
- Listen for abnormal noises: During a test drive, listen for any clunking, knocking, or unusual noises coming from the universal joint area. Pay attention to noise changes during acceleration, deceleration, and gear changes.
- Monitor vibrations: Note any vibrations felt through the vehicle, especially at higher speeds or under load conditions. Excessive vibrations can indicate problems with the universal joint or driveshaft.
- Seek professional inspection: If you suspect a failing universal joint but are uncertain about the diagnosis, it’s recommended to consult a professional mechanic or technician with experience in drivetrain systems. They can perform a comprehensive inspection, including measurements and specialized tests, to accurately diagnose the condition of the universal joint.
It’s important to address any signs of a failing universal joint promptly to avoid further damage, drivability issues, or potential safety hazards. Regular maintenance, including periodic inspection and lubrication, can help prevent premature universal joint failure.
In summary, signs of a failing universal joint include clunking or knocking noises, vibrations, difficulty in power transfer, visible wear or damage, and grease leakage. Diagnosing a failing universal joint involves visual inspection, checking for excessive play, listening for abnormal noises, monitoring vibrations, and seeking professional inspection when necessary.
How does a universal joint accommodate misalignment between shafts?
A universal joint, also known as a U-joint, is designed to accommodate misalignment between shafts and allow for the transmission of rotational motion. Let’s explore how a universal joint achieves this:
A universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. The yoke connects the input and output shafts, which are not in line with each other. The design of the universal joint enables it to flex and articulate, allowing for the accommodation of misalignment and changes in angles between the shafts.
When misalignment occurs between the input and output shafts, the universal joint allows for angular displacement. As the input shaft rotates, it causes the yoke to rotate along with it. Due to the perpendicular arrangement of the yoke arms, the output shaft connected to the other arm of the yoke experiences rotary motion at an angle to the input shaft.
The flexibility and articulation of the universal joint come from the bearings at the ends of the yoke arms. These bearings allow for smooth rotation and minimize friction between the yoke and the shafts. They are often enclosed within a housing or cross-shaped cap to provide protection and retain lubrication.
As the input shaft rotates and the yoke moves, the bearings within the universal joint allow for the necessary movement and adjustment. They enable the yoke to accommodate misalignment and changes in angles between the input and output shafts. The bearings allow the yoke to rotate freely and continuously, ensuring that torque can be transmitted smoothly between the shafts despite any misalignment.
By allowing angular displacement and articulation, the universal joint compensates for misalignment and ensures that the rotation of the input shaft is effectively transmitted to the output shaft. This flexibility is particularly important in applications where shafts are not perfectly aligned, such as in automotive drivelines or industrial machinery.
However, it’s important to note that universal joints do have limitations. They introduce a small amount of backlash or play, which can affect precision and accuracy in some applications. Additionally, at extreme angles, the operating angles of the universal joint may become limited, potentially causing increased wear and reducing its lifespan.
In summary, a universal joint accommodates misalignment between shafts by allowing angular displacement and articulation. The bearings within the universal joint enable the yoke to move and adjust, ensuring smooth and continuous rotation between the input and output shafts while compensating for their misalignment.
editor by CX 2024-04-25
China Hot selling Roller Shutter, 45 Degree Stainless Steel Cardan Joints
Product Description
Articolo-Artikel- Art. No.- |
L mm | D mm | Materiale-Material-Material- | |
410.1571.725S | 250 | Hex. 7 | inox-Edelstahl-Stainless Steel- | |
410.1571.750S | 500 | Hex. 7 | ||
410.1571.xxxS | Customerized | |||
Compatible with our Gear Winches, CHINAMFG 4100.05 series or handcranks assembled with this pivot. |
We, CHINAMFG GROUP, can provide you with:
1. Full range of roller shutter accessories.
2. Tubular motors 35mm, 45mm, 59mm and 92mm, Central Motors.
3. Insect Screens System and components.
4. Extruded Aluminum Profiles.
SIGATE has started to produce full range of roller shutter accessoreis since year 1999 and has become absolutely the leading company in China for Roller shutter accessories. Up to today, we are able to provide you with full packages in the fields of roller shutters, mosquito sistems, etc. Today, SIGATE GROUP own the following production facilities:
a. Factory One to produce full range of roller shutter accessories and mosquito systems and the website is: . Our factory is producing almost all the popular roller shutter accesssories prevailing in Italy, Germany, France, Spain and Poland. And these roller shutter accessories are selling well throughout the world.
At the same time, we have the best machine from Italy to make mosquito systems and we’ve developed several mosquito systems and you can find our catalogs in our website.
b. Factory Two to produceTubular motors for tube 35mm, 45mm, 59mm and 92mm. We are selling more than 700,000 motors a year throughout the world.
c. Factory Three to make Aluminum Extrusion and we are especially focusing on Aluminum profiles (guide rail, bottom beam, aluminum extruded slats, etc) for Roller Shutters, insect screens, blinds, windows, doors, etc.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Aluminum Roller Shutter |
---|---|
Material: | Stainless Steel |
Transport Package: | Carton |
Specification: | 50 PCS/Carton |
Trademark: | Sigate |
Origin: | Wuxi, Jiangsu, China |
Customization: |
Available
| Customized Request |
---|
How do you prevent premature wear in a universal joint?
Preventing premature wear in a universal joint is crucial for maintaining its performance, longevity, and reliability. Here’s a detailed explanation:
Several measures can be taken to prevent premature wear in a universal joint:
- Proper Lubrication: Adequate lubrication is essential for reducing friction, dissipating heat, and preventing premature wear in a universal joint. Regularly lubricating the joint with the recommended lubricant, such as grease or oil, helps to create a protective film between the moving parts, minimizing frictional losses and preventing metal-to-metal contact.
- Correct Alignment: Misalignment is a common cause of premature wear in a universal joint. Ensuring proper alignment between the shafts connected by the joint is crucial to distribute the load evenly and prevent excessive stress on the joint’s components. Misalignment can be minimized by using precision alignment techniques and checking the operating angles specified by the manufacturer.
- Appropriate Operating Angles: Universal joints have specified operating angles within which they can operate optimally. Operating the joint beyond these recommended angles can lead to increased wear and reduced lifespan. It is important to adhere to the manufacturer’s guidelines regarding the maximum allowable operating angles to prevent premature wear.
- Regular Maintenance: Implementing a regular maintenance schedule can help identify and address potential issues before they escalate into significant problems. Routine inspections of the universal joint, including checking for signs of wear, corrosion, or damage, can help detect any issues early on and allow for timely repairs or replacements.
- Proper Torque Capacity: Selecting a universal joint with an appropriate torque capacity for the specific application is essential for preventing premature wear. If the joint is subjected to torque levels exceeding its capacity, it can lead to excessive stress, deformation, and wear on the components. Ensuring that the selected joint can handle the expected loads and operating conditions is crucial.
- Quality Components: Using high-quality universal joint components, such as yokes, cross bearings, and needle bearings, can significantly contribute to preventing premature wear. Components made from durable materials with excellent strength and wear resistance properties are more likely to withstand the demanding conditions and provide longer service life.
- Avoiding Overloading: Overloading a universal joint beyond its rated capacity can lead to accelerated wear and failure. It is important to operate the joint within its specified load limits and avoid subjecting it to excessive torque or radial loads. Understanding the application requirements and ensuring that the joint is appropriately sized and rated for the intended load is crucial.
By following these preventive measures, it is possible to minimize premature wear in a universal joint, enhance its durability, and prolong its operational life. Regular maintenance, proper lubrication, correct alignment, and adherence to operating guidelines are key to ensuring optimal performance and preventing premature wear in universal joints.
How does a constant-velocity (CV) joint differ from a traditional universal joint?
A constant-velocity (CV) joint differs from a traditional universal joint in several ways. Here’s a detailed explanation:
A traditional universal joint (U-joint) and a constant-velocity (CV) joint are both used for transmitting torque between non-aligned or angularly displaced shafts. However, they have distinct design and operational differences:
- Mechanism: The mechanism of torque transmission differs between a U-joint and a CV joint. In a U-joint, torque is transmitted through a set of intersecting shafts connected by a cross or yoke arrangement. The angular misalignment between the shafts causes variations in speed and velocity, resulting in fluctuating torque output. On the other hand, a CV joint uses a set of interconnected elements, typically ball bearings or roller bearings, to maintain a constant velocity and torque output, regardless of the angular displacement between the input and output shafts.
- Smoothness and Efficiency: CV joints offer smoother torque transmission compared to U-joints. The constant velocity output of a CV joint eliminates speed fluctuations, reducing vibrations and allowing for more precise control and operation. This smoothness is particularly advantageous in applications where precise motion control and uniform power delivery are critical. Additionally, CV joints operate with higher efficiency as they minimize energy losses associated with speed variations and friction.
- Angular Capability: While U-joints are capable of accommodating larger angular misalignments, CV joints have a limited angular capability. U-joints can handle significant angular displacements, making them suitable for applications with extreme misalignment. In contrast, CV joints are designed for smaller angular displacements and are typically used in applications where constant velocity is required, such as automotive drive shafts.
- Operating Angles: CV joints can operate at larger operating angles without significant loss in torque or speed. This makes them well-suited for applications that require larger operating angles, such as front-wheel drive vehicles. U-joints, on the other hand, may experience speed fluctuations and reduced torque transmission capabilities at higher operating angles.
- Complexity and Size: CV joints are generally more complex in design compared to U-joints. They consist of multiple components, including inner and outer races, balls or rollers, cages, and seals. This complexity often results in larger physical dimensions compared to U-joints. U-joints, with their simpler design, tend to be more compact and easier to install in tight spaces.
In summary, a constant-velocity (CV) joint differs from a traditional universal joint (U-joint) in terms of torque transmission mechanism, smoothness, efficiency, angular capability, operating angles, complexity, and size. CV joints provide constant velocity output, smoother operation, and higher efficiency, making them suitable for applications where precise motion control and uniform power delivery are essential. U-joints, with their ability to accommodate larger angular misalignments, are often preferred for applications with extreme misalignment requirements.
Can you provide examples of vehicles that use universal joints?
Universal joints are commonly used in various types of vehicles for transmitting torque between shafts that are not in a straight line or are at an angle to each other. Here are some examples of vehicles that use universal joints:
- Automobiles: Universal joints are widely used in automobiles for transmitting torque from the engine to the rear wheels in rear-wheel drive vehicles. They are commonly found in the driveline, connecting the transmission or gearbox to the driveshaft, and in the driveshaft itself. Universal joints are also used in front-wheel drive vehicles for transmitting torque from the transaxle to the front wheels.
- Trucks and commercial vehicles: Universal joints are utilized in trucks and commercial vehicles for transmitting torque between various components of the drivetrain. They can be found in the driveshaft, connecting the transmission or gearbox to the rear differential or axle assembly.
- Off-road vehicles and SUVs: Universal joints are extensively used in off-road vehicles and SUVs that have four-wheel drive or all-wheel drive systems. They are employed in the driveline to transmit torque from the transmission or transfer case to the front and rear differentials or axle assemblies.
- Military vehicles: Universal joints are utilized in military vehicles for transmitting torque between different components of the drivetrain, similar to their use in trucks and off-road vehicles. They provide reliable torque transfer in demanding off-road and rugged environments.
- Agricultural and construction machinery: Universal joints are commonly found in agricultural and construction machinery, such as tractors, combines, excavators, loaders, and other heavy equipment. They are used in the drivelines and power take-off (PTO) shafts to transmit torque from the engine or motor to various components, attachments, or implements.
- Marine vessels: Universal joints are employed in marine vessels for transmitting torque between the engine and the propeller shaft. They are used in various types of watercraft, including boats, yachts, ships, and other marine vessels.
- Aircraft: Universal joints are utilized in certain aircraft applications, such as helicopters, to transmit torque between the engine and the rotor assembly. They allow for angular displacement and smooth transmission of power in the complex rotor systems of helicopters.
- Industrial machinery: Universal joints find applications in various types of industrial machinery, including manufacturing equipment, conveyors, pumps, and other power transmission systems. They enable torque transmission between non-aligned or angularly displaced shafts in industrial settings.
Please note that the specific usage of universal joints may vary depending on the vehicle design, drivetrain configuration, and application requirements. Different types of universal joints, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, may be employed based on the specific needs of the vehicle or machinery.
editor by CX 2024-04-24